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Jaguar Vector Database 
 

 

Artificial Intelligence and Database 
 

Artificial intelligence (AI) often relies on vector databases for various tasks such as 

natural language processing, information retrieval, recommendation systems, and 

similarity matching. The use of vector databases is particularly relevant in the context of 

machine learning models that leverage embeddings, which are numerical 

representations of data elements in a continuous vector space. 

 

Here are a few reasons why AI may benefit from vector databases: 

 

Efficient Representation 

Vectors provide a compact and efficient representation of complex data structures. By 

transforming data elements into vectors with thousands of dimensions, AI systems can 

work with numerical representations that are more amenable to mathematical 

operations and analysis. 

 

Similarity and Distance Metrics 

Vector databases enable the computation of similarity or distance metrics between 

vectors, such as cosine similarity or Euclidean distance. These metrics are fundamental 

for tasks like similarity matching, nearest neighbor searches, and clustering, which are 

essential in recommendation systems, content retrieval, and data exploration. 
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Information Retrieval 

Vector databases allow AI systems to index and retrieve relevant information efficiently. 

By converting textual or multimedia content into vectors, it becomes possible to 

organize and search through large volumes of data quickly. For instance, in a search 

engine, a vector representation of documents enables fast retrieval of relevant 

documents based on user queries. 

 

Recommendation Systems 

Vector databases facilitate the creation of recommendation systems by capturing user 

preferences and item characteristics. Embedding user interactions and item features into 

vectors allows AI models to measure the similarity between users and items, thereby 

generating personalized recommendations based on similar user-item pairs. 

 

Semantic Understanding 

Vector representations can capture semantic relationships between words or concepts. 

Techniques like word embeddings (e.g., Word2Vec or GloVe) map words into vectors, 

where similar words are located closer in the vector space. This enables AI models to 

understand the context, meaning, and semantic relationships between words, which is 

vital for natural language understanding and generation tasks. 

 

Vector databases provide a framework for organizing, manipulating, and querying data 

in AI systems. By leveraging vector representations and associated operations, AI models 

can effectively process and analyze complex information, leading to improved 

performance in various applications. 

 

Why Jaguar Vector Database 
 

In the fields of generative AI, the exponential growth of data is inevitable. From 

voluminous vector data to vast collections of photos and videos, the potential for 

information generation knows no bounds. However, efficiently managing this diverse 

and ever-expanding data landscape poses a significant challenge for traditional database 
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and storage systems. AI-generated data can quickly accumulate and consume significant 

storage space. Storing and managing this massive amount of data requires robust and 

scalable infrastructure. Organizations need to invest in adequate storage solutions, such 

as cloud storage or distributed file systems, to accommodate the growing data volumes. 

 

Traditional databases rely on consistent hashing techniques, which, unfortunately, lead 

to excessive data migration. During the constant expansion of data systems, incremental 

scaling operations often require data migration for almost every piece of data and 

impose substantial costs on the system. These costs manifest in various forms, including 

increased power consumption, hardware wear and tear, and degraded performance. 

 

The innovative ZeroMove technique is employed in JaguarDB that offers a revolutionary 

solution. In contrast to the consistent hashing algorithm, which requires data migration 

when scaling out the system, ZeroMove enables scaling without the need to move data 

between computers. Data is intelligently tagged with encoded identifiers to facilitate 

efficient host location. These encoded identifiers serve as unique markers that enable 

swift and accurate retrieval of data within the system. Our approach ensures that data 

remains in the host where it is hashed, thereby increasing availability, and improving 

system performance. 

 

Thanks to the revolutionary and unique ZeroMove technology, our vector database offers 

the following key benefits: 

 

Scalability  

Reducing the amount of data migration of a distributed system can significantly 

improve the system’s scalability by minimizing the disruption and potential risks 

associated with migrating large amounts of data. The benefit of zero data migration is 

more pronounced when data replication strategies are implemented. 

 

Simplification 

Data migration can be a complex and time-consuming process, especially in large-scale 

distributed database systems. By avoiding data migration, the system is simplified, and 

the potential for errors and downtime associated with data migration is reduced. 
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Enhanced Consistency 

Data consistency refers to the correctness of one data in relation to another data. It can 

be a challenge in distributed systems, especially during data migration. By avoiding data 

migration, the system can potentially maintain better data consistency. 

 

Cost Reduction  

Data migration can be expensive, especially if it is big and requires a lot of resources and 

time. By avoiding data migration, the system can potentially save on equipment, 

network, and administrative costs. 
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Use Cases of Vector Databases 
 

Vector databases have a wide range of applications across various industries. Here are 

some notable use cases: 

 

Recommendation Systems 

Vector databases can be used in recommendation systems to provide personalized 

recommendations to users. By representing items and user preferences as vectors, the 

database can efficiently compute similarities and make accurate recommendations. 
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Collaborative Filtering: Collaborative filtering is a popular recommendation technique 

that analyzes user behavior and item interactions. Vector databases can store user-item 

interaction data, such as ratings, preferences (size, color, brand, weight, height, quality, 

price, accessory), or purchase history, as vectors. By comparing the vectors of different 

users or items, the database can identify similar patterns and make recommendations 

based on the preferences of similar users or items. 

Content-Based Filtering: Content-based filtering focuses on the characteristics and 

attributes of items to make recommendations. Vector databases can store item features 

or attributes as vectors, such as genre, keywords, or textual descriptions. By analyzing the 

similarity between item vectors, the database can suggest items with similar features to 

those previously liked or interacted with by the user. 

Contextual Recommendations: Vector databases can incorporate contextual information 

to enhance recommendations. Contextual factors such as time, location, season, device, 

or user demographics can be represented as additional dimensions in the vectors. By 

considering contextual vectors along with user and item vectors, the database can 

generate context-aware recommendations that align with specific situations or user 

contexts. 

Multi-Domain Recommendations: Vector databases can support recommendations 

across multiple domains or types of items. By representing items from different domains 

as vectors, the database can provide cross-domain recommendations. For example, it can 

suggest movies based on the user's preferences in music or vice versa. 

 

Image and Video Search 

Vector databases can power image and video search engines by representing visual 

features of media files as vectors. This enables fast and accurate similarity search, 

content-based retrieval, and visual recommendation systems. 

Vector databases can be used to perform content-based image retrieval (CBIR). Images 

are represented as high-dimensional feature vectors extracted from various visual 

descriptors such as color, texture, shape, or deep learning-based features. When a user 

submits a query image, its features are compared against the feature vectors in the 

database to find visually similar images. 

Vector databases can power recommendation systems based on visual content. By 

representing images as vectors, the database can quickly identify visually related items 

and provide personalized recommendations. This is particularly useful in e-commerce, 

where users can discover visually similar products or related visual content. 
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Vector databases enable efficient video similarity search, allowing users to find videos 

that are visually similar to a given query video. Videos can be represented using features 

such as frame-level descriptors or temporal embeddings. The database can then perform 

similarity calculations and retrieve videos with similar visual content or style. Vector 

databases can support reverse image search capabilities, where users can submit an 

image as a query and retrieve similar images from the database. This is useful for 

applications like finding the original source of an image, identifying visually similar 

images across the web, or searching for visually related content. 

Vector databases can aid in content filtering by analyzing visual features of images or 

videos. This can be applied in scenarios like moderating user-generated content, 

identifying explicit or inappropriate visuals, or ensuring compliance with content 

policies. 

 

Natural Language Processing (NLP) 

Vector databases find application in NLP tasks such as document similarity, sentiment 

analysis, and semantic search. Textual data can be transformed into high-dimensional 

vector representations, enabling efficient indexing and retrieval. 

Document Similarity and Clustering: Vector databases can be used to measure the 

similarity between documents. Textual data is transformed into vector representations, 

such as word embeddings or document embeddings. By comparing the vectors of 

different documents, the database can identify similar content, cluster related 

documents, and enable efficient document search. 

Sentiment Analysis: Vector databases can aid in sentiment analysis, where the sentiment 

or emotion expressed in text is determined. Textual data is transformed into vectors, and 

sentiment analysis algorithms can be applied to analyze the sentiment associated with 

different vectors. This can be useful in social media monitoring, customer feedback 

analysis, or brand reputation management. 

Semantic Search: Vector databases enable semantic search capabilities, allowing users to 

find documents or passages related to specific concepts rather than just keyword 

matches. By representing text as vectors, the database can perform similarity 

calculations and retrieve documents with similar semantic meaning, even if the wording 

differs. 

Machine Translation: Vector databases can support machine translation systems by 

storing vector representations of words, phrases, or sentences in different languages. By 

comparing the vectors of source and target language segments, the database can assist in 

finding the most appropriate translation equivalents, improving the quality and 

efficiency of machine translation. 
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Question Answering: Vector databases can aid in question answering systems, where 

natural language questions are answered based on a collection of documents or 

knowledge bases. By transforming the text into vectors and using techniques like 

semantic matching, the database can identify relevant passages or documents that 

provide answers to specific questions. 

 

Fraud Detection 

Vector databases can be used in fraud detection systems to analyze patterns and 

anomalies. By representing user behavior or transaction data as vectors, the database can 

quickly identify suspicious activities or detect fraudulent patterns. 

Anomaly Detection: Vector databases can be utilized for anomaly detection in fraud 

detection systems. By representing user behavior or transaction data as vectors, the 

database can establish normal patterns or profiles based on historical data. Any 

deviations or anomalies from these patterns can be quickly identified, signaling potential 

fraudulent activities. 

Network Analysis: Vector databases can aid in fraud detection by analyzing connections 

and relationships between entities. By representing entities such as individuals, accounts, 

or devices as vectors, the database can identify fraudulent networks or organized 

fraudulent activities through link analysis, graph algorithms, and clustering techniques. 

Real-time Monitoring: Vector databases can support real-time monitoring and detection 

of fraudulent activities. By continuously updating and analyzing vectors representing 

ongoing transactions or user interactions, the database can quickly identify and flag 

potential fraud in real-time, enabling timely intervention and prevention. 

Multi-channel Fraud Detection: Vector databases can facilitate fraud detection across 

multiple channels, such as online transactions, mobile applications, or call centers. By 

integrating data from various sources and representing them as vectors, the database can 

perform cross-channel analysis to identify fraudulent activities that span multiple 

channels. 

Historical Analysis and Trend Identification: Vector databases can store and analyze 

historical fraud data, enabling the identification of long-term trends, evolving fraud 

patterns, and emerging threats. By representing historical fraud incidents as vectors, the 

database can uncover patterns and behaviors that may not be immediately apparent, 

assisting in proactive fraud prevention measures. 

 

Genome Analysis 
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Vector databases can be utilized in genomics research for DNA sequence analysis, 

variant calling, and genetic similarity comparisons. By representing genetic information 

as vectors, researchers can perform efficient searches and comparisons on large genomic 

datasets. 

DNA Sequence Analysis: Vector databases can store and analyze DNA sequences, which 

are typically represented as strings of nucleotides (A, T, C, G). By representing DNA 

sequences as vectors, the database can efficiently process and search for specific patterns, 

motifs, or variations within the genome. This is crucial for tasks such as gene discovery, 

functional annotation, and identification of genetic variations associated with diseases. 

Variant Calling: Variant calling is the process of identifying genetic variations or 

mutations within an individual's genome. Vector databases can store genomic data in a 

structured and efficient manner, allowing for the comparison and analysis of genomic 

variations across different individuals or populations. This aids in identifying disease-

causing mutations, understanding genetic diversity, and facilitating precision medicine. 

Comparative Genomics: Vector databases enable comparative genomics, where the 

genomes of different species or individuals are compared to identify similarities and 

differences. By representing genomes as vectors, the database can perform efficient 

similarity calculations, phylogenetic analyses, and identification of conserved regions or 

genes across species. 

Personalized Medicine: Vector databases can support personalized medicine by 

integrating genomic data with clinical information. By representing patient genomes as 

vectors and combining them with relevant clinical data, the database can aid in 

identifying genetic markers for disease predisposition, predicting treatment response, 

and guiding personalized therapeutic approaches. 

 

These are just a few examples of how vector databases can be applied in various 

domains. The flexibility and efficiency of vector representations make them suitable for 

a wide range of data-intensive applications, enabling fast and accurate analysis and 

retrieval of information. 

 

Green Technology  
 

By leveraging ZeroMoveTM technology, JaguarDB contributes to reducing carbon 

footprint and minimizing energy consumption. This aligns with the growing awareness 

and efforts to promote sustainability across various industries. 
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Saving Energy: ZeroMove technology could save $140 billion worth of power 

consumption in the next ten years. 

 

Less CO2 Emission: The ZeroMove groundbreaking technology could facilitate a 

reduction of approximately 620 billion pounds of CO2 emissions. 

 

Competitors 
 

JaguarDB, founded in 2013, has dedicated the past ten years to active development and 

rigorous testing, establishing itself as a robust and reliable database solution. In recent 

years, the market has witnessed the emergence of several competitors focused solely on 

handling vector data, known as vector databases. They have garnered attention within 

the AI community due to their specialized capabilities. However, they often operate in 

isolation or offer limited scalability, relying on traditional consistent hashing 

mechanisms as described earlier. Consequently, when faced with the colossal volumes of 

data generated in AI applications, these databases fail to provide the scalability required 

to support large-scale AI deployments effectively. 

 

Moreover, JaguarDB distinguishes itself by addressing the scalability challenge inherent 

in large-scale AI applications. By leveraging innovative technologies and advanced 

algorithms, JaguarDB offers a highly scalable solution capable of handling massive 

amounts of data. Its unique ZeroMove architecture enables seamless horizontal scaling, 

allowing organizations to accommodate growing AI workloads effortlessly.  

 

An AI data-lake is equally crucial for AI applications, as media data like images and 

videos tend to occupy more space compared to structured data. The ZeroMove 

technology is particularly potent when it comes to efficiently scaling AI data systems. 

This scalability, coupled with its extensive development and testing history, positions 

JaguarDB as a reliable choice for enterprises seeking to harness the full potential of AI 

while maintaining robust and scalable data storage and retrieval capabilities. 
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JaguarDB Features 
 

 

JaguarDB is not just a distributed vector database; it is a comprehensive solution that 

goes beyond vector data management. While it excels at handling vector data, it also 

seamlessly processes non-vector data within a fully integrated framework. 

 

JaguarDB stores high-dimensional vectors with the state-of-the-art HNSW graph index 

store. HNSW, short for Hierarchical Navigable Small World, is a data structure and 

algorithm used for approximate nearest neighbor search in high-dimensional spaces. It 

is designed to efficiently find data points that are close to a given query point in a high-

dimensional space, without exhaustively searching through all data points. 

 

HNSW creates a hierarchical structure of data points that forms a graph. Each level of 

the hierarchy is a different graph that represents the data points at different levels of 

detail. HNSW maintains a "small world" property, which means that even though the 

graph is not fully connected like a traditional graph, it is still possible to navigate from 

one node to another through a relatively small number of edges. HNSW constructs the 

hierarchical graph in a way that ensures data points are connected to nearby points, 

enabling efficient traversal of the graph to find approximate nearest neighbors. 

 

When searching for the nearest neighbors of a query point, HNSW uses the hierarchical 

structure to quickly navigate through the graph, starting from coarse levels and refining 

the search as it descends deeper into the hierarchy. HNSW focuses on approximate 

search rather than exact search. It sacrifices perfect accuracy for improved search 

efficiency, which is valuable when dealing with high-dimensional data. 

 

JaguarDB brings forth an advanced capability that enables users to engage in KNN 

similarity searches using a wide spectrum of distance metrics, which include 

fundamental measures like Euclidean and Manhattan distances, along with specialized 

metrics such as cosine, Jaccard, Hamming, and Minkowski distances. This diversity 

empowers users to tailor their similarity searches based on the specific characteristics of 

their data and the intricacies of their analytical requirements. Whether dealing with 
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spatial relationships, binary patterns, or various dimensions of data, JaguarDB 

accommodates a versatile selection of distance metrics to ensure proper similarity 

computation. 

 

JaguarDB offers the flexibility in hybrid search, or multimodal search, that combines 

multiple types of search techniques or data representations to optimize the search 

process for different types of queries. This approach is particularly useful in applications 

that handle heterogeneous data, where the data may include both vector-based 

embeddings and traditional structured or unstructured data. 

 

The groundbreaking ZeroMove technique is a pivotal feature within JaguarDB, 

delivering a transformative solution. Diverging from conventional consistent hashing 

algorithms that demand data migration during system expansion, ZeroMove empowers 

seamless scalability devoid of the necessity to transfer data across machines. ZeroMove 

technology aligns particularly well with vector index stores, as the process of removing 

vectors from such stores might necessitate a comprehensive index reconstruction when 

data is relocated. 

 

Time series data in JaguarDB refers to a sequence of data points that are ordered based 

on time intervals. Users of JaguarDB can collect data over successive time periods and let 

it automatically aggregate data over multiple time windows for real-time analysis, 

prediction, and decision-making in AI applications. Time series data often come from 

mobile targets, sensors, devices, financial markets, weather stations, social media, and 

more. 

 

Geospatial data support of JaguarDB is instrumental in applications such as 

environmental monitoring, disaster response, agriculture, and natural resource 

management. Geospatial data often exhibits in the form of vectors such as ling strings 

and polygons. AI models equipped with geospatial insights can predict the spread of 

wildfires, monitor deforestation, optimize irrigation strategies, and assess the impact of 

climate change. These applications hinge on the AI system's ability to process and 

analyze geospatial data, allowing for timely and informed interventions. 
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JaguarDB provides data lake capability which represents a powerful feature that 

integrates storage capabilities directly into the database system, offering a seamless and 

unified solution for managing, analyzing, and retrieving both structured and 

unstructured data. This integration brings efficiency, flexibility, and scalability to the 

storage and processing of diverse data types within the JaguarDB environment. 

 

Fault tolerance is of paramount significance in vector databases used in AI applications 

due to its role in ensuring system reliability, availability, and consistent performance, 

even in the face of unexpected errors or failures. This is particularly crucial in AI 

applications where accurate and timely data retrieval and processing are essential. 

JaguarDB offers tolerance of machine failures and network disconnections to ensure 

high availability of the vector database system. 

 

Vector data can be replicated with multiple copies, a maximum of three, in JaguarDB to 

ensure data availability, reliability, and fault tolerance. It creates and maintains duplicate 

copies of data across multiple nodes. This redundancy is crucial for the effectiveness of 

AI systems. 

 

Example of Using Jaguar Vector Database 
 

The subsequent Python example illustrates the integration of JaguarDB into AI 

applications for the benefit of software engineers and data scientists. In this 

demonstration, the focus lies on the seamless storage of textual data, the creation of 

embeddings, and the execution of similarity searches within the text data corpus. The 

process entails identifying texts that closely correspond to a given query text. Notably, 

this operation is solely reliant on vector embeddings, rendering the inclusion of explicit 

keywords or search cues unnecessary. 

 

 

The following Python code connects to JaguarDB instance: 

 

 
    jag = jaguarpy.Jaguar() 

 

    host = "127.0.0.1" 

    port = sys.argv[1] 
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    user = "admin-api-key" 

    database = "vdb" 

 

    rc = jag.connect( host, port, user, database ) 

print ("Connected to JaguarDB server" ) 

 

 

Next, a store containing vector column and other related data is created: 

  
 

  jag.execute("create store  textvec ( key: zid uuid, value: v vector(1024, 

'cosine_fraction_short'), text char(2048)，source char(32) )") 

 

 

In this statement, the "zid" field stands as an automatically generated unique identifier. 

The "v" field represents a vector, comprising two primary elements: an integer vector ID 

and an array of vector components. Notably, the dimension of the vector is set at 1024. 

The inclusion of "cosine" within the string "cosine_fraction_short" signifies the intention 

to employ the cosine distance metric for similarity searches conducted on the vector. The 

term "fraction" alludes to the anticipated fractional-format input data. It's worth noting 

that JaguarDB vector storage implements distinct quantization levels. Specifically, the 

short quantization mode leverages 16-bit quantization techniques to efficiently store 

vector data. There is no limit on the number of vectors in a store. Multiple vectors can be 

created on the same store, to capture various types of vectors for the same object. The 

“text” field can store text data for an object, with a maximum capacity of 2048 bytes. The 

field source indicates source place where the text was imported from. 

 

Then we can create an index, connecting the integer vector ID of a vector to the unique 

“zid” field for search of other attributes of an object: 

 

    jag.execute("create index  textvec_idx on  textvec(v, zid)") 

 

 

With JaguarDB, users can store various types of vectors, such as feature vectors and 

embedding vectors. An embedding vector, often simply referred to as an "embedding",  is 

a mathematical representation of a discrete item, such as a word, phrase, image, or any 

other entity, in a continuous vector space. This technique is commonly used in various 

fields, including natural language processing (NLP), computer vision, recommendation 

systems, and more. The primary idea behind embedding vectors is to capture semantic 

relationships between items by placing similar items closer together in the vector space. 
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In this example, we use the “BAAI/bge-large-en” pre-trained embedding model to 

generate embeddings for the text data. A pre-trained embedding model is a machine 

learning model that has been trained on a large dataset to create meaningful 

representations (embeddings) of items in a continuous vector space. These embeddings 

capture semantic relationships and contextual information about the items. Pre-training 

involves training the model on a specific task, such as language modeling or image 

classification, with the goal of learning general features and patterns from the data. 

These learned features can then be fine-tuned or used as-is for various downstream tasks. 

Pre-trained embedding models are especially popular in natural language processing 

(NLP) and computer vision. The model “BAA/bge-large-en” requires a dimension of 1024 

on the vectors, which was specified in the statement when we created the store and the 

vector field. 

 

 
    model = SentenceTransformer('BAAI/bge-large-en') 

 

 

There are some simple required steps to setup and use the model. They are described in 

the github project github.com/fserv/jaguardb, in embedding ➔ text ➔ baai-bge-large ➔ 

README.md.  

 

Next, we store a group of text data in the store: 

 
text = "Human impact on the environment (or anthropogenic environmental 

impact) refers to changes to biophysical environments and to ecosystems, 

biodiversity, and natural resources caused directly or indirectly by humans." 

    zuid1 = storeText( jag, model, text, “wiki” ) 

 

    text = "a group of people involved in persistent interpersonal 

relationships, or a large social grouping sharing the same geographical or 

social territory, typically subject to the same political authority and 

dominant cultural expectations. Human societies are characterized by patterns 

of relationships (social relations) between individuals who share a 

distinctive culture and institutions; a given society may be described as the 

total of such relationships among its constituent members." 

    zuid2 = storeText( jag, model, text, “wiki”  ) 

 

    text = "In 1768, Astley, a skilled equestrian, began performing 

exhibitions of trick horse riding in an open field called Ha'Penny Hatch on 

the south side of the Thames River, England. In 1770, he hired acrobats, 

tightrope walkers, jugglers and a clown to fill in the pauses between the 

equestrian demonstrations and thus chanced on the format which was later 

named a circus.  Performances developed significantly over the next fifty 

years, with large-scale theatrical battle reenactments becoming a significant 

feature. " 

    zuid3 = storeText( jag, model, text, “wiki”   ) 
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    text = "Astley had a genius for trick riding. He saw that trick riders 

received the most attention from the crowds in Islington. He had an idea for 

opening a riding school in London in which he could also conduct shows of 

acrobatic riding skill. In 1768, Astley performed in an open field in what is 

now the Waterloo area of London, behind the present site of St John's Church. 

Astley added a clown to his shows to amuse the spectators between equestrian 

sequences, moving to fenced premises just south of Westminster Bridge, where 

he opened his riding school from 1769 onwards and expanded the content of his 

shows. He taught riding in the mornings and performed his feats of 

horsemanship in the afternoons." 

    zuid4 = storeText( jag, model, text, “wiki”   ) 

 

    text = "After the Amphitheatre was rebuilt again after the third fire, it 

was said to be very grand.  The external walls were 148 feet long which was 

larger than anything else at the time in London.  The interior of the 

Amphitheatre was designed with a proscenium stage surrounded by boxes and 

galleries for spectators. The general structure of the interior was 

octagonal. The pit used for the entertainers and riders became a standardised 

43 feet in diameter, with the circular enclosure surrounded by a painted four 

foot barrier. Astley's original circus was 62 ft (~19 m) in diameter, and 

later he settled it at 42 ft (~13 m), which has been an international 

standard for circuses since." 

    zuid5 = storeText( jag, model, text, “google”   ) 

 

 

    text = "According to the Big Bang theory, the energy and matter initially 

present have become less dense as the universe expanded. Afte 

r an initial accelerated expansion called the inflationary epoch at around 

10−32 seconds, and the separation of the four known fundamental forces, the 

universe gradually cooled and continued to expand, allowing the first 

subatomic particles and simple atoms to form. Dark matter gradually gathered, 

forming a foam-like structure of filaments and voids under the influence of 

gravity. Giant clouds of hydrogen and helium were gradually drawn to the 

places where dark matter was most dense, forming the first galaxies, stars, 

and everything else seen today." 

    zuid6 = storeText( jag, model, text, “wiki”   ) 

 

    text = "By comparison, general relativity did not appear to be as useful, 

beyond making minor corrections to predictions of Newtonian gravitation 

theory. It seemed to offer little potential for experimental test, as most of 

its assertions were on an astronomical scale. Its mathematics seemed 

difficult and fully understandable only by a small number of people. Around 

1960, general relativity became central to physics and astronomy. New 

mathematical techniques to apply to general relativity streamlined 

calculations and made its concepts more easily visualized. As astronomical 

phenomena were discovered, such as quasars (1963), the 3-kelvin microwave 

background radiation (1965), pulsars (1967), and the first black hole 

candidates (1981), the theory explained their attributes, and measurement of 

them further confirmed the theory." 

    zuid7 = storeText( jag, model, text, “imf”   ) 

 

    text = "In astronomy, the magnitude of a gravitational redshift is often 

expressed as the velocity that would create an equivalent shift through the 

relativistic Doppler effect. In such units, the 2 ppm sunlight redshift 

corresponds to a 633 m/s receding velocity, roughly of the same magnitude as 

convective motions in the sun, thus complicating the measurement. The GPS 
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satellite gravitational blueshift velocity equivalent is less than 0.2 m/s, 

which is negligible compared to the actual Doppler shift resulting from its 

orbital velocity." 

    zuid8 = storeText( jag, model, text, “wiki”   ) 

 

    text = "Turn on the sprinkler system. In order to locate the break or 

leak in the sprinkler system, you need to run water through it. Turn on the 

sprinkler system to activate the flow of water. Allow the water to run for 

about 2 minutes before you check the lines. Do this in the daytime, when 

you'll have an easier time spotting the leak. If your sprinkler system is 

separated into zones, activate the zones one at a time so you can identify 

the break or leak more easily." 

    zuid9 = storeText( jag, model, text, “wiki”   ) 

 

    text = "Check for water bubbling up from the soil. If you see a pool of 

water or water coming from the soil, then there’s a leak in the sprinkler 

line buried underneath. Mark the general location of the leak or break so you 

can identify it when the water is turned off. Place an item like a shovel or 

a rock on the ground near the leak. Turn off the sprinkler system after 

you’ve found the leak. If you’ve found the signs of a leak and located the 

region where the line is leaking or broken, turn off the water so you can 

repair the line. Use the shut-off valve in the control box to stop the flow 

of water through the system." 

    zuid10 = storeText( jag, model, text, “wiki”   ) 

 

    text = "In fact, Antarctica is such a good spot for meteorite hunters 

that crews of scientists visit every year, searching for these otherworldly 

rocks, driving around the surface until they spot a lone dark rock on an 

otherwise unbroken expanse of white. However, you don’t always have to travel 

to the other side of the world to find a meteorite. Sometimes meteorites will 

come to you. Keep an eye open for local reports of brilliant fireballs 

lighting your region’s sky. Debris from such displays scatters across the 

ground and sometimes hits structures or vehicles. Watch for information about 

fireballs in your area on the websites of the American Meteor Society or the 

International Meteor Organization." 

    zuid11 = storeText( jag, model, text, “wiki”   ) 

 

    text = "Most tornadoes are found in the Great Plains of the central 

United States – an ideal environment for the formation of severe 

thunderstorms. In this area, known as Tornado Alley, storms are caused when 

dry cold air moving south from Canada meets warm moist air traveling north 

from the Gulf of Mexico. Tornadoes can form at any time of year, but most 

occur in the spring and summer months along with thunderstorms.  May and June 

are usually the peak months for tornadoes. The Great Plains are conducive to 

the type of thunderstorms (supercells) that spawn tornadoes. It is in this 

region that cool, dry air in the upper levels of the atmosphere caps warm, 

humid surface air. This situation leads to a very unstable atmosphere and the 

development of severe thunderstorms." 

zuid12 = storeText( jag, model, text, “google”   ) 

 

 

The function storeTex is implemented with the following program: 

 
def storeText(jag, model, text, src): 

    sentences = [ text ] 



 

18 
 

    embeddings = model.encode(sentences, normalize_embeddings=False) 

    comma_str = ",".join( [str(x) for x in embeddings[0] ]) 

 

    istr = "insert into textvec values ('" + comma_str + "', '" + text + 

"',’” + src + “’)" 

    jag.execute( istr ) 

    return jag.getLastUuid() 

 

 

Now we have a query and get similar texts from database: 

queryText = "More recently, that focus has shifted eastward by 400 to 500 

miles. In the past decade or so tornadoes have become prevalent in eastern 

Missouri and Arkansas, western Tennessee and Kentucky, and northern 

Mississippi and Alabama—a new region of concentrated storms. Tornado activity 

in early 2023 epitomized the trend." 

    K = 3; 

    retrieveTopK( jag, model, queryText, K ) 

 

Then we can have another query and get similar texts from database: 

    queryText = "Think of designing a landscape for the bare lot surrounding 

your new home as an adventure in creativity. Perhaps your property needs only 

a few small, easily doable projects to make it more attractive. Either way, 

it's important to consider how each change will relate to the big picture. 

Stand back from time to time to see the entire landscape and how each part 

fits into it." 

    K = 3; 

retrieveTopK( jag, model, queryText, K ) 

 

The full listing of Python3 programs is shown below. 

 

def searchSimilarTexts(jag, model, queryText, K): 

    sentences = [ queryText ] 

    embeddings = model.encode(sentences, normalize_embeddings=False) 

    comma_separated_str = ",".join( [str(x) for x in embeddings[0] ]) 
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    qstr = "select similarity(v, '" + comma_separated_str 

    qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')" 

    qstr += " from  textvec" 

 

    jag.query( qstr ) 

 

    jsonstr = '' 

    while jag.reply(): 

        jsonstr = jag.jsonString() 

 

    return jsonstr 

 

 

def getTextByVID(jag, vid): 

    qstr =" select zid from test.textvec.textvec_idx where v='" + vid + "'" 

    zid = '' 

    jag.query( qstr ) 

    while jag.reply(): 

        zid = jag.getValue("zid") 

 

    qstr = "select text from textvec where zid='" + zid + "'" 

    jag.query( qstr ) 

    txt = '' 

    while jag.reply(): 

        txt = jag.getValue("text") 

 

    return txt 

 

def retrieveTopK( jag, model, queryText, K ): 

    print("Query: " + queryText ) 

    json_str = searchSimilarTexts( jag, model, queryText, K ) 

    json_obj = json.loads(json_str) 
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    i = 0; 

    print("\n") 

    print("Retrieved similar texts: ") 

    for rec in json_obj: 

        dat = rec[str(i)] 

        print("\n") 

        print("Rank: " + str(i+1)) 

        vid = dat["id"] 

        print("Vector ID: " + vid ) 

        print("Distance: " + dat["distance"] ) 

        txt = getTextByVID( jag, vid ) 

        print("Text: " + txt ) 

        i += 1 

 

print("\n\n") 

 

Furthermore, extending beyond text embeddings, the capability exists to generate image 

and video embeddings. These embeddings serve as efficient tools for rapid image and 

video searches using vector-based techniques. This advancement empowers users to 

swiftly locate relevant images and videos by exploiting the inherent characteristics 

captured within the embedding vectors. As a result, the need for intricate keyword-based 

searches or complex metadata is significantly reduced, enhancing the speed and 

accuracy of the search process. 

 

Integrating Vector Search and Exact Search 
 

In various application scenarios, there arises a need for users to perform targeted queries 

on a dataset, ensuring that the retrieved data records not only adhere to certain criteria 

but also exhibit a certain level of similarity to a provided data sample. This intricate task 

demands the identification of vectors that are both closely related and satisfy specific 

prerequisites. With the innovative capabilities of JaguarDB, this complex process can be 

streamlined into a single step. Through the integration of similarity search alongside 
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selective criteria, JaguarDB facilitates the discovery of nearest neighbors that fulfill 

predefined qualifications. This advanced functionality empowers users to seamlessly 

locate a subset of data records and subsequently assess their likeness to a reference 

vector, resulting in the assignment of similarity rankings. By encompassing both the 

aspects of similarity and tailored selection, this approach significantly mitigates the 

potential for inaccuracies, making it particularly well-suited for environments 

characterized by stringent business requirements. 

 

JaguarDB's unique amalgamation of similarity-based search and tailored qualification 

selection brings unprecedented efficiency to the intricate task of querying and 

comparison. Once a cohort of relevant data records is extracted, their alignment with a 

given vector is precisely evaluated, generating a hierarchy of similarity rankings. This 

integrated approach is instrumental in refining the matching process, ensuring that data 

records not only exhibit the desired attributes but also possess a designated degree of 

resemblance to a reference sample. This holistic functionality carries substantial 

benefits, especially in high-stakes scenarios where precision is paramount. By converging 

the twin challenges of similarity and criterion-based filtering, JaguarDB effectively 

minimizes the potential for inaccuracies, offering a robust solution for industries 

demanding precise data retrieval and analysis. Through this innovative approach, 

JaguarDB empowers users to navigate the complexities of data exploration with 

enhanced accuracy and confidence, establishing itself as a pivotal tool in the pursuit of 

data-driven excellence. 

 

The following similarity search statement is extended with the “where clause” to filter 

the nearest neighbors of the input query vector: 

 

select  

similarity(v, 'QUERY_VECTOR', 

'topk=K,type=DISTANCE_INPUT_QUANTIZATION') 

from STORE 

where attribute1 = … and attribute2 = …; 

 

For example: 
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select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1', 

'topk=100,type=manhatten_fraction_float')  

from vectab 

where customer_region=’NE’ and marriage_status=’single’; 

 

In this illustrative scenario, the foremost consideration involves the establishment of a 

topK records subset, containing a specified count of 100 records, which are inspected to 

see if they match the criteria given by the where predicates. The intersection of the two 

sets of records is returned to the user. 

 

JaguarDB Programming API 
 

 

JaguarDB offers a comprehensive set of application programming interfaces (APIs) 

tailored to various development needs. These APIs can be seamlessly employed within 

the jql.bin client terminal or seamlessly integrated into programming languages such as 

Java, Python, Go, and Node.js. This flexibility empowers developers to interact with 

JaguarDB using their preferred environment, ensuring a smooth and versatile 

development experience. 

 

Creating a Store for Vectors 

 

create store STORE (  

key: …KEY…,  

value: VECCOL vector(dimension,'DISTANCE_INPUT_QUANTIZATION'),  

…other_fields…  

) 

 

The symbol "VECCOL" designates the name of the vector column, while "dimension" 

denotes the count of components within a vector. Standard dimensions often include 

values like 768, 1024, 1536, etc. The string "DISTANCE_INPUT_QUANTIZATION" is a 
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vector definition that serves to specify the nature of the distance, input data type, and 

level of quantization employed in the vector storage and search of similarity between 

vectors. This comprehensive approach accommodates various distance types, which 

encompass: 

 

Euclidean Distance 

The Euclidean distance, also known as the L2 distance or the Euclidean norm, is a 

measure of the straight-line distance between two points in a multi-dimensional space. 

It's commonly used to quantify the similarity between vectors. 

 

dist = √∑(Ai − Bi)2
n

i=1

 

 

Cosine Distance 

Cosine distance is a measure used to quantify the dissimilarity between two vectors in a 

multi-dimensional space. Unlike the Euclidean distance that measures the direct 

geometric distance between vectors, the cosine distance focuses on the angle between 

the vectors. 

 

 

InnerProduct 

Inner product similarity is useful for similarity search in scenarios where the 

magnitudes of vectors are important in addition to their directions. 
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Manhatten Distance 

Manhattan distance is a distance metric between two points in a multi-dimensional 

vector space. It is the sum of absolute difference between the measures in all dimensions 

of two points. 

dist = ∑|Ai − Bi|

n

i=1

 

 

Chebyshev Distance 

Chebyshev distance is a metric defined on a vector space where the distance between two 

vectors is the greatest of their differences along any coordinate dimension. 

 

dist = maxi(|Ai − Bi|) 

 

 

Hamming Distance 

The Hamming distance between two vectors is the number of positions at which the 

corresponding components are different. 

 

dist = ∑Δ(Ai,  Bi)

𝑛

𝑖=1

 

 

 

Jeccard Distance 

The Jeccard distance between two vectors is computed by taking the ratio of Intersection 

over Union of the two vectors. 
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Minkowski Half 

In general, the Minkowski distance of order p is given by: 

 

𝑑𝑖𝑠𝑡 = (∑|𝐴𝑖 − 𝐵𝑖|
𝑝

𝑛

𝑖−1

)

1/𝑝

 

 

In JaguarDB, Minkowski Half distance refers to the Minkowski distance where p = 0.5. 

 

The input type in JaguarDB refers to the expected data format in the input vectors. 

There are two input types: fraction and whole. JaguarDB excels not only in managing 

vector embeddings but also in handling a diverse range of feature vectors. These vectors 

can include various types and forms, whether they are normalized or unnormalized, 

presented in fractional or full original formats. This versatility underscores JaguarDB's 

capability to accommodate a wide array of data formats. 

 

Fraction Input Format 

Each component of a vector is in the range of [-1.0, +1.0], inclusive. An example of a such 

a vector would be: “0.1, 0.02, -0.04, -0.5, 0.12, 0.53”. 

 

Whole Input Format 

Components of a vector are not limited to the range of [-1.0, +1.0]. They can be in any 

range. However, they could be trimmed and converted to the range that is required by 

the quantization level as described below. 

 

Quantization Level 
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There are three quantization levels in JaguarDB:  byte, short, and float. The process of 

quantizing input vectors yields efficient memory utilization within the system. While 

storing a float number demands 4 bytes, employing fewer bytes for storing vector 

components can yield substantial memory savings. When components are stored as 

signed integers, memory savings can reach 50%, while utilizing only a single byte for 

vector components can result in an impressive 75% reduction in memory usage. This 

approach is termed "short quantization level" for the utilization of signed integers and 

"byte quantization level" for the use of a single byte. The quantization of input vectors 

aligns with the level specified by the user during vector creation, optimizing memory 

consumption while maintaining data integrity. 

 

With byte (8-bit) quantization level, the number of quantized hyper cubes in a 1024-

dimensional hyperspace is 2561024 which is already a large number and vector 

distribution would be sparse. With a short (16-bit) quantization level, the number of 

available hypercubes is even larger. In rare application scenarios, the vectors could be 

densely populated around clusters. A 16-bit quantization may provide higher resolution 

of differentiating vectors than an 8-bit quantization. It is a trade-off between storage size 

and accuracy in searching nearest neighbors.   

 

Multiple Search Types 

During the creation of a vector store, the second argument within the "vector()" field 

description, or key definition, offers the flexibility to incorporate multiple instances of 

"DISTANCE_INPUT_QUANTIZATION". For instance, it can appear as a series of 

"cosine_fraction_byte, hamming_whole_short". This allows users to specify multiple 

distance types and quantization levels, albeit limited to a single input type for the same 

distance and quantization level. Notably, distinct vector data stores are managed for each 

unique combination of the three types, ensuring the effective organization of data based 

on these parameters. 

 

List of Key Definitions 

 

Key Definition Distance Input (component x) Quantization 

euclidean_fraction_short Euclidean -1.0 <= x <= +1.0 16-bit integer 

euclidean_fraction_byte Euclidean -1.0 <= x <= +1.0 8-bit integer 

euclidean_whole_short Euclidean -32767 <= x <= 32767 16-bit integer 
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euclidean_whole_byte Euclidean -127 <= x <= 127 8-bit integer 

    

cosine_fraction_short Cosine -1.0 <= x <= +1.0 16-bit integer 

cosine_fraction_byte Cosine -1.0 <= x <= +1.0 8-bit integer 

cosine_whole_short Cosine -32767 <= x <= 32767 16-bit integer 

cosine_whole_byte Cosine -127 <= x <= 127 8-bit integer 

    

innerproduct_fraction_short Inner Product -1.0 <= x <= +1.0 16-bit integer 

innerproduct_fraction_byte Inner Product -1.0 <= x <= +1.0 8-bit integer 

innerproduct_whole_short Inner Product -32767 <= x <= 32767 16-bit integer 

innerproduct_whole_byte Inner Product -127 <= x <= 127 8-bit integer 

    

manhatten_fraction_short Manhatten -1.0 <= x <= +1.0 16-bit integer 

manhatten_fraction_byte Manhatten -1.0 <= x <= +1.0 8-bit integer 

manhatten_whole_short Manhatten -32767 <= x <= 32767 16-bit integer 

manhatten_whole_byte Manhatten -127 <= x <= 127 8-bit integer 

    

hamming_fraction_short Hamming -1.0 <= x <= +1.0 16-bit integer 

hamming_fraction_byte Hamming -1.0 <= x <= +1.0 8-bit integer 

hamming_whole_short Hamming -32767 <= x <= 32767 16-bit integer 

hamming_whole_byte Hamming -127 <= x <= 127 8-bit integer 

    

chebyshev_fraction_short Chebyshev -1.0 <= x <= +1.0 16-bit integer 

chebyshev_fraction_byte Chebyshev -1.0 <= x <= +1.0 8-bit integer 

chebyshev_whole_short Chebyshev -32767 <= x <= 32767 16-bit integer 

chebyshev_whole_byte Chebyshev -127 <= x <= 127 8-bit integer 

    

minkowskihalf_fraction_short MinkowskiHalf -1.0 <= x <= +1.0 16-bit integer 

minkowskihalf_fraction_byte MinkowskiHalf -1.0 <= x <= +1.0 8-bit integer 

minkowskihalf_whole_short MinkowskiHalf -32767 <= x <= 32767 16-bit integer 

minkowskihalf_whole_byte MinkowskiHalf -127 <= x <= 127 8-bit integer 

    

jeccard_fraction_short Jeccard -1.0 <= x <= +1.0 16-bit integer 

jeccard_fraction_byte Jeccard -1.0 <= x <= +1.0 8-bit integer 

jeccard_whole_short Jeccard -32767 <= x <= 32767 16-bit integer 

jeccard_whole_byte Jeccard -127 <= x <= 127 8-bit integer 

    

euclidean_fraction_float Euclidean float 32-bit float 

euclidean_whole_float Euclidean float 32-bit float 

    

cosine_fraction_float Cosine float 32-bit float 

cosine_whole_float Cosine float 32-bit float 

    

innerproduct_fraction_float InnerProduct float 32-bit float 
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innerproduct_whole_float InnerProduct float 32-bit float 

    

manhatten_fraction_float Manhatten float 32-bit float 

manhatten_whole_float Manhatten float 32-bit float 

    

hamming_fraction_float Hamming float 32-bit float 

hamming_whole_float Hamming float 32-bit float 

    

chebyshev_fraction_float Chebyshev float 32-bit float 

chebyshev_whole_float Chebyshev float 32-bit float 

    

minkowskihalf_fraction_float MinkowskiHalf float 32-bit float 

minkowskihalf_whole_float MinkowskiHalf float 32-bit float 

    

jeccard_fraction_float Jeccard float 32-bit float 

jeccard_whole_float Jeccard float 32-bit float 

 

 

Adding Vectors 

 

JaguarDB can integrate all application and vector data, facilitating streamlined data 

management for real-world scenarios. It enables the incorporation of vector data 

alongside other pertinent information related to business objects, allowing for 

comprehensive and cohesive data representation. 

 

insert into STORE ( …, VECCOL, …) values (…, 'VECTOR_STRING', … ) 

insert into STORE values (…, 'VECTOR_STRING', … ) 

 

Where VECTOR_STRING is a list of comma-separated components of the vector. In the 

second statement, the values must be provided according to the correct order of the 

columns in the store. Once the vector is added, the value of the field for VECCOL will be 

replaced with an integer as the unique identifier for the vector. With a vector ID, the 

components of the vector can be retrieved from the vector database.  

 

Similarity Search 
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Similarity search using JaguarDB vectors involves the process of finding vectors within 

the database that are most similar to a given query vector. This search is conducted 

based on predefined similarity metrics, such as cosine similarity or Euclidean distance 

similarity, which quantify the resemblance between vectors. The API for similarity 

search is as follows: 

 

select  

similarity(v, 'QUERY_VECTOR', 

'topk=K,type=DISANCE_INPUT_QUANTIZATION') 

from STORE; 

 

where QUERY_VECTOR is a list of comma-separated component values of the vector. 

The number “K” specifies the number of most similar vectors to be found and returned 

for the query vector. The returned result is in the JSON format and the developer can 

call the jsonString() function to parse the JSON format and retrieve the ID and distance 

values. 

 

As an example, the following statement returns the top 5 most similar vectors to the 

query vector: 

 

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1', 

'topk=5,type=manhatten_fraction_byte') from vec1; 

 

Combining Vector Search and Exact  Search 

 

JaguarDB empowers users with a unique synergy of similarity search and exact predicate 

search. In the context of this integration, consider the following Python illustration: it 

finds textual instances similar to a given input text while concurrently sifting through 

records that adhere to specific criteria. The outcome of this combined endeavor is the 

assignment of similarity values to the retrieved records, a direct consequence of the 

similarity search's operation. It is noted that the governing criterion, in this case, relates 

to the source of the text. However, in practical implementation, a number of predicates 

can be applied.  
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select  

similarity(v, 'QUERY_VECTOR', 

'topk=K,type=DISTANCE_INPUT_QUANTIZATION') 

from STORE; 

 

An example of integrating both similarity search and predicate based search is shown 

below: 

 

 
def retrieveTopKWithCriteria( jag, model, queryText, src, K ): 

    print("Query: " + queryText ) 

 

    sentences = [ queryText ] 

    embeddings = model.encode(sentences, normalize_embeddings=False) 

    comma_str = ",".join( [str(x) for x in embeddings[0] ]) 

 

    qstr = "select similarity(v, '" + comma_str 

    qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')" 

    qstr += " from textvec" 

    qstr += " where source='" + src + "'" 

 

    jag.query( qstr ) 

 

    print("\n") 

    print("Result: ") 

    while jag.reply(): 

        print('zid={}'.format(jag.getValue("zid")) ) 

        print('v={}'.format(jag.getValue("v")) ) 

        print('vectorid={}'.format(jag.getValue("vectorid")) ) 

        print('rank={}'.format(jag.getValue("rank")) ) 

        print('distance={}'.format(jag.getValue("distance")) ) 

        print('source={}'.format(jag.getValue("source")) ) 

        print('text={}'.format(jag.getValue("text")) ) 

        print("\n") 

 

 

Anomaly Detection 

 

Jaguar vector database is revolutionizing the way businesses approach anomaly 

detection. It provides a structured and efficient means of storing and querying data, 

enabling organizations to analyze patterns and deviations with remarkable precision. 

This innovative technique not only streamlines the process of anomaly detection but 
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also enhances the accuracy of identifying potential threats. As the business landscape 

continues to evolve in an increasingly digital world, leveraging vector databases for 

anomaly detection has become a strategic imperative for enterprises seeking to 

safeguard their operations and data from malicious activities. 

 

The API for detecting anomaly is shown below: 

 

select  

anomalous(VECCOL,  

          'type=DISTANCE_INPUT_QUANTIZATION,activation=[sigma:perc]')  

from STORE 

 

where the type specifies the distance type and quantization levels of vectors; the optional 

parameter sigma is the number of standard deviations, perc is percentage of vector 

components pass the sigma value.   

 

select  

anomalous(vc,  

          'type=euclidean_whole_float')  

from myvector; 

 

 

select  

anomalous(vc,  

          'type=euclidean_whole_float, activation=[0.3:40;1.5:30]')  

from myvector; 

 

Result: 

json  {"anomalous":"YES","prate":"0.388671875"} 
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Retrieving Vectors 

 

In cases where users need to retrieve the component values of a vector, the following 

API can be used: 

 

select  

vector(VECCOL, 'type=DISTANCE_INPUT_QUANTIZATION')  

from STORE 

where KEY=… 

 

For example,   

 

select vector(v, 'type=manhatten_fraction_short')  

from vec1  

where fid=’ANjf848223@01’ 

 

The utilized KEY in the query must uniquely identify a record housing the vector, 

typically involving the exclusive use of the ZeroMove unique ID. 

 

Updating Vectors 

 

The vector components can be updated with two approaches: 

 

update STORE 

set VECCOL:vector='VECTOR_STRING'  

where KEY=… 

 

update STORE 

set VECCOL:vector='VECTOR_ID:VECTOR_STRING'  

where 1 
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where VECTOR_ID is the integer value of the vector ID, and VECTOR_STRING is a list 

of comma-separated component values. 

 

Deleting Vectors 

 

The vector components cannot be deleted separately without deleting the record 

containing the vector. A store record can be deleted with the following command: 

 

Delete from STORE 

where KEY=… 

 

 

The KEY in the above statement must uniquely identify a record housing the vector, 

typically the ZeroMove unique ID. In addition, dropping or truncating a store will delete 

the associated vectors as well. 

 

 

Conclusion 
 

JaguarDB technology provides a powerful and eco-friendly solution for efficient and 

scalable data management for artificial intelligence. Leveraging ZeroMove hashing 

technology, its focus on performance, advanced features, and sustainability makes it a 

promising choice for organizations seeking reliable and environmentally conscious 

solutions for artificial intelligence. 


