

1

Jaguar Vector Database

Artificial Intelligence and Database

Artificial intelligence (AI) often relies on vector databases for various tasks such as

natural language processing, information retrieval, recommendation systems, and

similarity matching. The use of vector databases is particularly relevant in the context of

machine learning models that leverage embeddings, which are numerical

representations of data elements in a continuous vector space.

Here are a few reasons why AI may benefit from vector databases:

Efficient Representation

Vectors provide a compact and efficient representation of complex data structures. By

transforming data elements into vectors with thousands of dimensions, AI systems can

work with numerical representations that are more amenable to mathematical

operations and analysis.

Similarity and Distance Metrics

Vector databases enable the computation of similarity or distance metrics between

vectors, such as cosine similarity or Euclidean distance. These metrics are fundamental

for tasks like similarity matching, nearest neighbor searches, and clustering, which are

essential in recommendation systems, content retrieval, and data exploration.

2

Information Retrieval

Vector databases allow AI systems to index and retrieve relevant information efficiently.

By converting textual or multimedia content into vectors, it becomes possible to

organize and search through large volumes of data quickly. For instance, in a search

engine, a vector representation of documents enables fast retrieval of relevant

documents based on user queries.

Recommendation Systems

Vector databases facilitate the creation of recommendation systems by capturing user

preferences and item characteristics. Embedding user interactions and item features into

vectors allows AI models to measure the similarity between users and items, thereby

generating personalized recommendations based on similar user-item pairs.

Semantic Understanding

Vector representations can capture semantic relationships between words or concepts.

Techniques like word embeddings (e.g., Word2Vec or GloVe) map words into vectors,

where similar words are located closer in the vector space. This enables AI models to

understand the context, meaning, and semantic relationships between words, which is

vital for natural language understanding and generation tasks.

Vector databases provide a framework for organizing, manipulating, and querying data

in AI systems. By leveraging vector representations and associated operations, AI models

can effectively process and analyze complex information, leading to improved

performance in various applications.

Why Jaguar Vector Database

In the fields of generative AI, the exponential growth of data is inevitable. From

voluminous vector data to vast collections of photos and videos, the potential for

information generation knows no bounds. However, efficiently managing this diverse

and ever-expanding data landscape poses a significant challenge for traditional database

3

and storage systems. AI-generated data can quickly accumulate and consume significant

storage space. Storing and managing this massive amount of data requires robust and

scalable infrastructure. Organizations need to invest in adequate storage solutions, such

as cloud storage or distributed file systems, to accommodate the growing data volumes.

Traditional databases rely on consistent hashing techniques, which, unfortunately, lead

to excessive data migration. During the constant expansion of data systems, incremental

scaling operations often require data migration for almost every piece of data and

impose substantial costs on the system. These costs manifest in various forms, including

increased power consumption, hardware wear and tear, and degraded performance.

The innovative ZeroMove technique is employed in JaguarDB that offers a revolutionary

solution. In contrast to the consistent hashing algorithm, which requires data migration

when scaling out the system, ZeroMove enables scaling without the need to move data

between computers. Data is intelligently tagged with encoded identifiers to facilitate

efficient host location. These encoded identifiers serve as unique markers that enable

swift and accurate retrieval of data within the system. Our approach ensures that data

remains in the host where it is hashed, thereby increasing availability, and improving

system performance.

Thanks to the revolutionary and unique ZeroMove technology, our vector database offers

the following key benefits:

Scalability

Reducing the amount of data migration of a distributed system can significantly

improve the system’s scalability by minimizing the disruption and potential risks

associated with migrating large amounts of data. The benefit of zero data migration is

more pronounced when data replication strategies are implemented.

Simplification

Data migration can be a complex and time-consuming process, especially in large-scale

distributed database systems. By avoiding data migration, the system is simplified, and

the potential for errors and downtime associated with data migration is reduced.

4

Enhanced Consistency

Data consistency refers to the correctness of one data in relation to another data. It can

be a challenge in distributed systems, especially during data migration. By avoiding data

migration, the system can potentially maintain better data consistency.

Cost Reduction

Data migration can be expensive, especially if it is big and requires a lot of resources and

time. By avoiding data migration, the system can potentially save on equipment,

network, and administrative costs.

5

Use Cases of Vector Databases

Vector databases have a wide range of applications across various industries. Here are

some notable use cases:

Recommendation Systems

Vector databases can be used in recommendation systems to provide personalized

recommendations to users. By representing items and user preferences as vectors, the

database can efficiently compute similarities and make accurate recommendations.

6

Collaborative Filtering: Collaborative filtering is a popular recommendation technique

that analyzes user behavior and item interactions. Vector databases can store user-item

interaction data, such as ratings, preferences (size, color, brand, weight, height, quality,

price, accessory), or purchase history, as vectors. By comparing the vectors of different

users or items, the database can identify similar patterns and make recommendations

based on the preferences of similar users or items.

Content-Based Filtering: Content-based filtering focuses on the characteristics and

attributes of items to make recommendations. Vector databases can store item features

or attributes as vectors, such as genre, keywords, or textual descriptions. By analyzing the

similarity between item vectors, the database can suggest items with similar features to

those previously liked or interacted with by the user.

Contextual Recommendations: Vector databases can incorporate contextual information

to enhance recommendations. Contextual factors such as time, location, season, device,

or user demographics can be represented as additional dimensions in the vectors. By

considering contextual vectors along with user and item vectors, the database can

generate context-aware recommendations that align with specific situations or user

contexts.

Multi-Domain Recommendations: Vector databases can support recommendations

across multiple domains or types of items. By representing items from different domains

as vectors, the database can provide cross-domain recommendations. For example, it can

suggest movies based on the user's preferences in music or vice versa.

Image and Video Search

Vector databases can power image and video search engines by representing visual

features of media files as vectors. This enables fast and accurate similarity search,

content-based retrieval, and visual recommendation systems.

Vector databases can be used to perform content-based image retrieval (CBIR). Images

are represented as high-dimensional feature vectors extracted from various visual

descriptors such as color, texture, shape, or deep learning-based features. When a user

submits a query image, its features are compared against the feature vectors in the

database to find visually similar images.

Vector databases can power recommendation systems based on visual content. By

representing images as vectors, the database can quickly identify visually related items

and provide personalized recommendations. This is particularly useful in e-commerce,

where users can discover visually similar products or related visual content.

7

Vector databases enable efficient video similarity search, allowing users to find videos

that are visually similar to a given query video. Videos can be represented using features

such as frame-level descriptors or temporal embeddings. The database can then perform

similarity calculations and retrieve videos with similar visual content or style. Vector

databases can support reverse image search capabilities, where users can submit an

image as a query and retrieve similar images from the database. This is useful for

applications like finding the original source of an image, identifying visually similar

images across the web, or searching for visually related content.

Vector databases can aid in content filtering by analyzing visual features of images or

videos. This can be applied in scenarios like moderating user-generated content,

identifying explicit or inappropriate visuals, or ensuring compliance with content

policies.

Natural Language Processing (NLP)

Vector databases find application in NLP tasks such as document similarity, sentiment

analysis, and semantic search. Textual data can be transformed into high-dimensional

vector representations, enabling efficient indexing and retrieval.

Document Similarity and Clustering: Vector databases can be used to measure the

similarity between documents. Textual data is transformed into vector representations,

such as word embeddings or document embeddings. By comparing the vectors of

different documents, the database can identify similar content, cluster related

documents, and enable efficient document search.

Sentiment Analysis: Vector databases can aid in sentiment analysis, where the sentiment

or emotion expressed in text is determined. Textual data is transformed into vectors, and

sentiment analysis algorithms can be applied to analyze the sentiment associated with

different vectors. This can be useful in social media monitoring, customer feedback

analysis, or brand reputation management.

Semantic Search: Vector databases enable semantic search capabilities, allowing users to

find documents or passages related to specific concepts rather than just keyword

matches. By representing text as vectors, the database can perform similarity

calculations and retrieve documents with similar semantic meaning, even if the wording

differs.

Machine Translation: Vector databases can support machine translation systems by

storing vector representations of words, phrases, or sentences in different languages. By

comparing the vectors of source and target language segments, the database can assist in

finding the most appropriate translation equivalents, improving the quality and

efficiency of machine translation.

8

Question Answering: Vector databases can aid in question answering systems, where

natural language questions are answered based on a collection of documents or

knowledge bases. By transforming the text into vectors and using techniques like

semantic matching, the database can identify relevant passages or documents that

provide answers to specific questions.

Fraud Detection

Vector databases can be used in fraud detection systems to analyze patterns and

anomalies. By representing user behavior or transaction data as vectors, the database can

quickly identify suspicious activities or detect fraudulent patterns.

Anomaly Detection: Vector databases can be utilized for anomaly detection in fraud

detection systems. By representing user behavior or transaction data as vectors, the

database can establish normal patterns or profiles based on historical data. Any

deviations or anomalies from these patterns can be quickly identified, signaling potential

fraudulent activities.

Network Analysis: Vector databases can aid in fraud detection by analyzing connections

and relationships between entities. By representing entities such as individuals, accounts,

or devices as vectors, the database can identify fraudulent networks or organized

fraudulent activities through link analysis, graph algorithms, and clustering techniques.

Real-time Monitoring: Vector databases can support real-time monitoring and detection

of fraudulent activities. By continuously updating and analyzing vectors representing

ongoing transactions or user interactions, the database can quickly identify and flag

potential fraud in real-time, enabling timely intervention and prevention.

Multi-channel Fraud Detection: Vector databases can facilitate fraud detection across

multiple channels, such as online transactions, mobile applications, or call centers. By

integrating data from various sources and representing them as vectors, the database can

perform cross-channel analysis to identify fraudulent activities that span multiple

channels.

Historical Analysis and Trend Identification: Vector databases can store and analyze

historical fraud data, enabling the identification of long-term trends, evolving fraud

patterns, and emerging threats. By representing historical fraud incidents as vectors, the

database can uncover patterns and behaviors that may not be immediately apparent,

assisting in proactive fraud prevention measures.

Genome Analysis

9

Vector databases can be utilized in genomics research for DNA sequence analysis,

variant calling, and genetic similarity comparisons. By representing genetic information

as vectors, researchers can perform efficient searches and comparisons on large genomic

datasets.

DNA Sequence Analysis: Vector databases can store and analyze DNA sequences, which

are typically represented as strings of nucleotides (A, T, C, G). By representing DNA

sequences as vectors, the database can efficiently process and search for specific patterns,

motifs, or variations within the genome. This is crucial for tasks such as gene discovery,

functional annotation, and identification of genetic variations associated with diseases.

Variant Calling: Variant calling is the process of identifying genetic variations or

mutations within an individual's genome. Vector databases can store genomic data in a

structured and efficient manner, allowing for the comparison and analysis of genomic

variations across different individuals or populations. This aids in identifying disease-

causing mutations, understanding genetic diversity, and facilitating precision medicine.

Comparative Genomics: Vector databases enable comparative genomics, where the

genomes of different species or individuals are compared to identify similarities and

differences. By representing genomes as vectors, the database can perform efficient

similarity calculations, phylogenetic analyses, and identification of conserved regions or

genes across species.

Personalized Medicine: Vector databases can support personalized medicine by

integrating genomic data with clinical information. By representing patient genomes as

vectors and combining them with relevant clinical data, the database can aid in

identifying genetic markers for disease predisposition, predicting treatment response,

and guiding personalized therapeutic approaches.

These are just a few examples of how vector databases can be applied in various

domains. The flexibility and efficiency of vector representations make them suitable for

a wide range of data-intensive applications, enabling fast and accurate analysis and

retrieval of information.

Green Technology

By leveraging ZeroMoveTM technology, JaguarDB contributes to reducing carbon

footprint and minimizing energy consumption. This aligns with the growing awareness

and efforts to promote sustainability across various industries.

10

Saving Energy: ZeroMove technology could save $140 billion worth of power

consumption in the next ten years.

Less CO2 Emission: The ZeroMove groundbreaking technology could facilitate a

reduction of approximately 620 billion pounds of CO2 emissions.

Competitors

JaguarDB, founded in 2013, has dedicated the past ten years to active development and

rigorous testing, establishing itself as a robust and reliable database solution. In recent

years, the market has witnessed the emergence of several competitors focused solely on

handling vector data, known as vector databases. They have garnered attention within

the AI community due to their specialized capabilities. However, they often operate in

isolation or offer limited scalability, relying on traditional consistent hashing

mechanisms as described earlier. Consequently, when faced with the colossal volumes of

data generated in AI applications, these databases fail to provide the scalability required

to support large-scale AI deployments effectively.

Moreover, JaguarDB distinguishes itself by addressing the scalability challenge inherent

in large-scale AI applications. By leveraging innovative technologies and advanced

algorithms, JaguarDB offers a highly scalable solution capable of handling massive

amounts of data. Its unique ZeroMove architecture enables seamless horizontal scaling,

allowing organizations to accommodate growing AI workloads effortlessly.

An AI data-lake is equally crucial for AI applications, as media data like images and

videos tend to occupy more space compared to structured data. The ZeroMove

technology is particularly potent when it comes to efficiently scaling AI data systems.

This scalability, coupled with its extensive development and testing history, positions

JaguarDB as a reliable choice for enterprises seeking to harness the full potential of AI

while maintaining robust and scalable data storage and retrieval capabilities.

11

JaguarDB Features

JaguarDB is not just a distributed vector database; it is a comprehensive solution that

goes beyond vector data management. While it excels at handling vector data, it also

seamlessly processes non-vector data within a fully integrated framework.

JaguarDB stores high-dimensional vectors with the state-of-the-art HNSW graph index

store. HNSW, short for Hierarchical Navigable Small World, is a data structure and

algorithm used for approximate nearest neighbor search in high-dimensional spaces. It

is designed to efficiently find data points that are close to a given query point in a high-

dimensional space, without exhaustively searching through all data points.

HNSW creates a hierarchical structure of data points that forms a graph. Each level of

the hierarchy is a different graph that represents the data points at different levels of

detail. HNSW maintains a "small world" property, which means that even though the

graph is not fully connected like a traditional graph, it is still possible to navigate from

one node to another through a relatively small number of edges. HNSW constructs the

hierarchical graph in a way that ensures data points are connected to nearby points,

enabling efficient traversal of the graph to find approximate nearest neighbors.

When searching for the nearest neighbors of a query point, HNSW uses the hierarchical

structure to quickly navigate through the graph, starting from coarse levels and refining

the search as it descends deeper into the hierarchy. HNSW focuses on approximate

search rather than exact search. It sacrifices perfect accuracy for improved search

efficiency, which is valuable when dealing with high-dimensional data.

JaguarDB brings forth an advanced capability that enables users to engage in KNN

similarity searches using a wide spectrum of distance metrics, which include

fundamental measures like Euclidean and Manhattan distances, along with specialized

metrics such as cosine, Jaccard, Hamming, and Minkowski distances. This diversity

empowers users to tailor their similarity searches based on the specific characteristics of

their data and the intricacies of their analytical requirements. Whether dealing with

12

spatial relationships, binary patterns, or various dimensions of data, JaguarDB

accommodates a versatile selection of distance metrics to ensure proper similarity

computation.

JaguarDB offers the flexibility in hybrid search, or multimodal search, that combines

multiple types of search techniques or data representations to optimize the search

process for different types of queries. This approach is particularly useful in applications

that handle heterogeneous data, where the data may include both vector-based

embeddings and traditional structured or unstructured data.

The groundbreaking ZeroMove technique is a pivotal feature within JaguarDB,

delivering a transformative solution. Diverging from conventional consistent hashing

algorithms that demand data migration during system expansion, ZeroMove empowers

seamless scalability devoid of the necessity to transfer data across machines. ZeroMove

technology aligns particularly well with vector index stores, as the process of removing

vectors from such stores might necessitate a comprehensive index reconstruction when

data is relocated.

Time series data in JaguarDB refers to a sequence of data points that are ordered based

on time intervals. Users of JaguarDB can collect data over successive time periods and let

it automatically aggregate data over multiple time windows for real-time analysis,

prediction, and decision-making in AI applications. Time series data often come from

mobile targets, sensors, devices, financial markets, weather stations, social media, and

more.

Geospatial data support of JaguarDB is instrumental in applications such as

environmental monitoring, disaster response, agriculture, and natural resource

management. Geospatial data often exhibits in the form of vectors such as ling strings

and polygons. AI models equipped with geospatial insights can predict the spread of

wildfires, monitor deforestation, optimize irrigation strategies, and assess the impact of

climate change. These applications hinge on the AI system's ability to process and

analyze geospatial data, allowing for timely and informed interventions.

13

JaguarDB provides data lake capability which represents a powerful feature that

integrates storage capabilities directly into the database system, offering a seamless and

unified solution for managing, analyzing, and retrieving both structured and

unstructured data. This integration brings efficiency, flexibility, and scalability to the

storage and processing of diverse data types within the JaguarDB environment.

Fault tolerance is of paramount significance in vector databases used in AI applications

due to its role in ensuring system reliability, availability, and consistent performance,

even in the face of unexpected errors or failures. This is particularly crucial in AI

applications where accurate and timely data retrieval and processing are essential.

JaguarDB offers tolerance of machine failures and network disconnections to ensure

high availability of the vector database system.

Vector data can be replicated with multiple copies, a maximum of three, in JaguarDB to

ensure data availability, reliability, and fault tolerance. It creates and maintains duplicate

copies of data across multiple nodes. This redundancy is crucial for the effectiveness of

AI systems.

Example of Using Jaguar Vector Database

The subsequent Python example illustrates the integration of JaguarDB into AI

applications for the benefit of software engineers and data scientists. In this

demonstration, the focus lies on the seamless storage of textual data, the creation of

embeddings, and the execution of similarity searches within the text data corpus. The

process entails identifying texts that closely correspond to a given query text. Notably,

this operation is solely reliant on vector embeddings, rendering the inclusion of explicit

keywords or search cues unnecessary.

The following Python code connects to JaguarDB instance:

 jag = jaguarpy.Jaguar()

 host = "127.0.0.1"

 port = sys.argv[1]

14

 user = "admin-api-key"

 database = "vdb"

 rc = jag.connect(host, port, user, database)

print ("Connected to JaguarDB server")

Next, a store containing vector column and other related data is created:

 jag.execute("create store textvec (key: zid uuid, value: v vector(1024,

'cosine_fraction_short'), text char(2048)，source char(32))")

In this statement, the "zid" field stands as an automatically generated unique identifier.

The "v" field represents a vector, comprising two primary elements: an integer vector ID

and an array of vector components. Notably, the dimension of the vector is set at 1024.

The inclusion of "cosine" within the string "cosine_fraction_short" signifies the intention

to employ the cosine distance metric for similarity searches conducted on the vector. The

term "fraction" alludes to the anticipated fractional-format input data. It's worth noting

that JaguarDB vector storage implements distinct quantization levels. Specifically, the

short quantization mode leverages 16-bit quantization techniques to efficiently store

vector data. There is no limit on the number of vectors in a store. Multiple vectors can be

created on the same store, to capture various types of vectors for the same object. The

“text” field can store text data for an object, with a maximum capacity of 2048 bytes. The

field source indicates source place where the text was imported from.

Then we can create an index, connecting the integer vector ID of a vector to the unique

“zid” field for search of other attributes of an object:

 jag.execute("create index textvec_idx on textvec(v, zid)")

With JaguarDB, users can store various types of vectors, such as feature vectors and

embedding vectors. An embedding vector, often simply referred to as an "embedding", is

a mathematical representation of a discrete item, such as a word, phrase, image, or any

other entity, in a continuous vector space. This technique is commonly used in various

fields, including natural language processing (NLP), computer vision, recommendation

systems, and more. The primary idea behind embedding vectors is to capture semantic

relationships between items by placing similar items closer together in the vector space.

15

In this example, we use the “BAAI/bge-large-en” pre-trained embedding model to

generate embeddings for the text data. A pre-trained embedding model is a machine

learning model that has been trained on a large dataset to create meaningful

representations (embeddings) of items in a continuous vector space. These embeddings

capture semantic relationships and contextual information about the items. Pre-training

involves training the model on a specific task, such as language modeling or image

classification, with the goal of learning general features and patterns from the data.

These learned features can then be fine-tuned or used as-is for various downstream tasks.

Pre-trained embedding models are especially popular in natural language processing

(NLP) and computer vision. The model “BAA/bge-large-en” requires a dimension of 1024

on the vectors, which was specified in the statement when we created the store and the

vector field.

 model = SentenceTransformer('BAAI/bge-large-en')

There are some simple required steps to setup and use the model. They are described in

the github project github.com/fserv/jaguardb, in embedding ➔ text ➔ baai-bge-large ➔

README.md.

Next, we store a group of text data in the store:

text = "Human impact on the environment (or anthropogenic environmental

impact) refers to changes to biophysical environments and to ecosystems,

biodiversity, and natural resources caused directly or indirectly by humans."

 zuid1 = storeText(jag, model, text, “wiki”)

 text = "a group of people involved in persistent interpersonal

relationships, or a large social grouping sharing the same geographical or

social territory, typically subject to the same political authority and

dominant cultural expectations. Human societies are characterized by patterns

of relationships (social relations) between individuals who share a

distinctive culture and institutions; a given society may be described as the

total of such relationships among its constituent members."

 zuid2 = storeText(jag, model, text, “wiki”)

 text = "In 1768, Astley, a skilled equestrian, began performing

exhibitions of trick horse riding in an open field called Ha'Penny Hatch on

the south side of the Thames River, England. In 1770, he hired acrobats,

tightrope walkers, jugglers and a clown to fill in the pauses between the

equestrian demonstrations and thus chanced on the format which was later

named a circus. Performances developed significantly over the next fifty

years, with large-scale theatrical battle reenactments becoming a significant

feature. "

 zuid3 = storeText(jag, model, text, “wiki”)

16

 text = "Astley had a genius for trick riding. He saw that trick riders

received the most attention from the crowds in Islington. He had an idea for

opening a riding school in London in which he could also conduct shows of

acrobatic riding skill. In 1768, Astley performed in an open field in what is

now the Waterloo area of London, behind the present site of St John's Church.

Astley added a clown to his shows to amuse the spectators between equestrian

sequences, moving to fenced premises just south of Westminster Bridge, where

he opened his riding school from 1769 onwards and expanded the content of his

shows. He taught riding in the mornings and performed his feats of

horsemanship in the afternoons."

 zuid4 = storeText(jag, model, text, “wiki”)

 text = "After the Amphitheatre was rebuilt again after the third fire, it

was said to be very grand. The external walls were 148 feet long which was

larger than anything else at the time in London. The interior of the

Amphitheatre was designed with a proscenium stage surrounded by boxes and

galleries for spectators. The general structure of the interior was

octagonal. The pit used for the entertainers and riders became a standardised

43 feet in diameter, with the circular enclosure surrounded by a painted four

foot barrier. Astley's original circus was 62 ft (~19 m) in diameter, and

later he settled it at 42 ft (~13 m), which has been an international

standard for circuses since."

 zuid5 = storeText(jag, model, text, “google”)

 text = "According to the Big Bang theory, the energy and matter initially

present have become less dense as the universe expanded. Afte

r an initial accelerated expansion called the inflationary epoch at around

10−32 seconds, and the separation of the four known fundamental forces, the

universe gradually cooled and continued to expand, allowing the first

subatomic particles and simple atoms to form. Dark matter gradually gathered,

forming a foam-like structure of filaments and voids under the influence of

gravity. Giant clouds of hydrogen and helium were gradually drawn to the

places where dark matter was most dense, forming the first galaxies, stars,

and everything else seen today."

 zuid6 = storeText(jag, model, text, “wiki”)

 text = "By comparison, general relativity did not appear to be as useful,

beyond making minor corrections to predictions of Newtonian gravitation

theory. It seemed to offer little potential for experimental test, as most of

its assertions were on an astronomical scale. Its mathematics seemed

difficult and fully understandable only by a small number of people. Around

1960, general relativity became central to physics and astronomy. New

mathematical techniques to apply to general relativity streamlined

calculations and made its concepts more easily visualized. As astronomical

phenomena were discovered, such as quasars (1963), the 3-kelvin microwave

background radiation (1965), pulsars (1967), and the first black hole

candidates (1981), the theory explained their attributes, and measurement of

them further confirmed the theory."

 zuid7 = storeText(jag, model, text, “imf”)

 text = "In astronomy, the magnitude of a gravitational redshift is often

expressed as the velocity that would create an equivalent shift through the

relativistic Doppler effect. In such units, the 2 ppm sunlight redshift

corresponds to a 633 m/s receding velocity, roughly of the same magnitude as

convective motions in the sun, thus complicating the measurement. The GPS

17

satellite gravitational blueshift velocity equivalent is less than 0.2 m/s,

which is negligible compared to the actual Doppler shift resulting from its

orbital velocity."

 zuid8 = storeText(jag, model, text, “wiki”)

 text = "Turn on the sprinkler system. In order to locate the break or

leak in the sprinkler system, you need to run water through it. Turn on the

sprinkler system to activate the flow of water. Allow the water to run for

about 2 minutes before you check the lines. Do this in the daytime, when

you'll have an easier time spotting the leak. If your sprinkler system is

separated into zones, activate the zones one at a time so you can identify

the break or leak more easily."

 zuid9 = storeText(jag, model, text, “wiki”)

 text = "Check for water bubbling up from the soil. If you see a pool of

water or water coming from the soil, then there’s a leak in the sprinkler

line buried underneath. Mark the general location of the leak or break so you

can identify it when the water is turned off. Place an item like a shovel or

a rock on the ground near the leak. Turn off the sprinkler system after

you’ve found the leak. If you’ve found the signs of a leak and located the

region where the line is leaking or broken, turn off the water so you can

repair the line. Use the shut-off valve in the control box to stop the flow

of water through the system."

 zuid10 = storeText(jag, model, text, “wiki”)

 text = "In fact, Antarctica is such a good spot for meteorite hunters

that crews of scientists visit every year, searching for these otherworldly

rocks, driving around the surface until they spot a lone dark rock on an

otherwise unbroken expanse of white. However, you don’t always have to travel

to the other side of the world to find a meteorite. Sometimes meteorites will

come to you. Keep an eye open for local reports of brilliant fireballs

lighting your region’s sky. Debris from such displays scatters across the

ground and sometimes hits structures or vehicles. Watch for information about

fireballs in your area on the websites of the American Meteor Society or the

International Meteor Organization."

 zuid11 = storeText(jag, model, text, “wiki”)

 text = "Most tornadoes are found in the Great Plains of the central

United States – an ideal environment for the formation of severe

thunderstorms. In this area, known as Tornado Alley, storms are caused when

dry cold air moving south from Canada meets warm moist air traveling north

from the Gulf of Mexico. Tornadoes can form at any time of year, but most

occur in the spring and summer months along with thunderstorms. May and June

are usually the peak months for tornadoes. The Great Plains are conducive to

the type of thunderstorms (supercells) that spawn tornadoes. It is in this

region that cool, dry air in the upper levels of the atmosphere caps warm,

humid surface air. This situation leads to a very unstable atmosphere and the

development of severe thunderstorms."

zuid12 = storeText(jag, model, text, “google”)

The function storeTex is implemented with the following program:

def storeText(jag, model, text, src):

 sentences = [text]

18

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_str = ",".join([str(x) for x in embeddings[0]])

 istr = "insert into textvec values ('" + comma_str + "', '" + text +

"',’” + src + “’)"

 jag.execute(istr)

 return jag.getLastUuid()

Now we have a query and get similar texts from database:

queryText = "More recently, that focus has shifted eastward by 400 to 500

miles. In the past decade or so tornadoes have become prevalent in eastern

Missouri and Arkansas, western Tennessee and Kentucky, and northern

Mississippi and Alabama—a new region of concentrated storms. Tornado activity

in early 2023 epitomized the trend."

 K = 3;

 retrieveTopK(jag, model, queryText, K)

Then we can have another query and get similar texts from database:

 queryText = "Think of designing a landscape for the bare lot surrounding

your new home as an adventure in creativity. Perhaps your property needs only

a few small, easily doable projects to make it more attractive. Either way,

it's important to consider how each change will relate to the big picture.

Stand back from time to time to see the entire landscape and how each part

fits into it."

 K = 3;

retrieveTopK(jag, model, queryText, K)

The full listing of Python3 programs is shown below.

def searchSimilarTexts(jag, model, queryText, K):

 sentences = [queryText]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_separated_str = ",".join([str(x) for x in embeddings[0]])

19

 qstr = "select similarity(v, '" + comma_separated_str

 qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')"

 qstr += " from textvec"

 jag.query(qstr)

 jsonstr = ''

 while jag.reply():

 jsonstr = jag.jsonString()

 return jsonstr

def getTextByVID(jag, vid):

 qstr =" select zid from test.textvec.textvec_idx where v='" + vid + "'"

 zid = ''

 jag.query(qstr)

 while jag.reply():

 zid = jag.getValue("zid")

 qstr = "select text from textvec where zid='" + zid + "'"

 jag.query(qstr)

 txt = ''

 while jag.reply():

 txt = jag.getValue("text")

 return txt

def retrieveTopK(jag, model, queryText, K):

 print("Query: " + queryText)

 json_str = searchSimilarTexts(jag, model, queryText, K)

 json_obj = json.loads(json_str)

20

 i = 0;

 print("\n")

 print("Retrieved similar texts: ")

 for rec in json_obj:

 dat = rec[str(i)]

 print("\n")

 print("Rank: " + str(i+1))

 vid = dat["id"]

 print("Vector ID: " + vid)

 print("Distance: " + dat["distance"])

 txt = getTextByVID(jag, vid)

 print("Text: " + txt)

 i += 1

print("\n\n")

Furthermore, extending beyond text embeddings, the capability exists to generate image

and video embeddings. These embeddings serve as efficient tools for rapid image and

video searches using vector-based techniques. This advancement empowers users to

swiftly locate relevant images and videos by exploiting the inherent characteristics

captured within the embedding vectors. As a result, the need for intricate keyword-based

searches or complex metadata is significantly reduced, enhancing the speed and

accuracy of the search process.

Integrating Vector Search and Exact Search

In various application scenarios, there arises a need for users to perform targeted queries

on a dataset, ensuring that the retrieved data records not only adhere to certain criteria

but also exhibit a certain level of similarity to a provided data sample. This intricate task

demands the identification of vectors that are both closely related and satisfy specific

prerequisites. With the innovative capabilities of JaguarDB, this complex process can be

streamlined into a single step. Through the integration of similarity search alongside

21

selective criteria, JaguarDB facilitates the discovery of nearest neighbors that fulfill

predefined qualifications. This advanced functionality empowers users to seamlessly

locate a subset of data records and subsequently assess their likeness to a reference

vector, resulting in the assignment of similarity rankings. By encompassing both the

aspects of similarity and tailored selection, this approach significantly mitigates the

potential for inaccuracies, making it particularly well-suited for environments

characterized by stringent business requirements.

JaguarDB's unique amalgamation of similarity-based search and tailored qualification

selection brings unprecedented efficiency to the intricate task of querying and

comparison. Once a cohort of relevant data records is extracted, their alignment with a

given vector is precisely evaluated, generating a hierarchy of similarity rankings. This

integrated approach is instrumental in refining the matching process, ensuring that data

records not only exhibit the desired attributes but also possess a designated degree of

resemblance to a reference sample. This holistic functionality carries substantial

benefits, especially in high-stakes scenarios where precision is paramount. By converging

the twin challenges of similarity and criterion-based filtering, JaguarDB effectively

minimizes the potential for inaccuracies, offering a robust solution for industries

demanding precise data retrieval and analysis. Through this innovative approach,

JaguarDB empowers users to navigate the complexities of data exploration with

enhanced accuracy and confidence, establishing itself as a pivotal tool in the pursuit of

data-driven excellence.

The following similarity search statement is extended with the “where clause” to filter

the nearest neighbors of the input query vector:

select

similarity(v, 'QUERY_VECTOR',

'topk=K,type=DISTANCE_INPUT_QUANTIZATION')

from STORE

where attribute1 = … and attribute2 = …;

For example:

22

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=100,type=manhatten_fraction_float')

from vectab

where customer_region=’NE’ and marriage_status=’single’;

In this illustrative scenario, the foremost consideration involves the establishment of a

topK records subset, containing a specified count of 100 records, which are inspected to

see if they match the criteria given by the where predicates. The intersection of the two

sets of records is returned to the user.

JaguarDB Programming API

JaguarDB offers a comprehensive set of application programming interfaces (APIs)

tailored to various development needs. These APIs can be seamlessly employed within

the jql.bin client terminal or seamlessly integrated into programming languages such as

Java, Python, Go, and Node.js. This flexibility empowers developers to interact with

JaguarDB using their preferred environment, ensuring a smooth and versatile

development experience.

Creating a Store for Vectors

create store STORE (

key: …KEY…,

value: VECCOL vector(dimension,'DISTANCE_INPUT_QUANTIZATION'),

…other_fields…

)

The symbol "VECCOL" designates the name of the vector column, while "dimension"

denotes the count of components within a vector. Standard dimensions often include

values like 768, 1024, 1536, etc. The string "DISTANCE_INPUT_QUANTIZATION" is a

23

vector definition that serves to specify the nature of the distance, input data type, and

level of quantization employed in the vector storage and search of similarity between

vectors. This comprehensive approach accommodates various distance types, which

encompass:

Euclidean Distance

The Euclidean distance, also known as the L2 distance or the Euclidean norm, is a

measure of the straight-line distance between two points in a multi-dimensional space.

It's commonly used to quantify the similarity between vectors.

dist = √∑(Ai − Bi)2
n

i=1

Cosine Distance

Cosine distance is a measure used to quantify the dissimilarity between two vectors in a

multi-dimensional space. Unlike the Euclidean distance that measures the direct

geometric distance between vectors, the cosine distance focuses on the angle between

the vectors.

InnerProduct

Inner product similarity is useful for similarity search in scenarios where the

magnitudes of vectors are important in addition to their directions.

24

Manhatten Distance

Manhattan distance is a distance metric between two points in a multi-dimensional

vector space. It is the sum of absolute difference between the measures in all dimensions

of two points.

dist = ∑|Ai − Bi|

n

i=1

Chebyshev Distance

Chebyshev distance is a metric defined on a vector space where the distance between two

vectors is the greatest of their differences along any coordinate dimension.

dist = maxi(|Ai − Bi|)

Hamming Distance

The Hamming distance between two vectors is the number of positions at which the

corresponding components are different.

dist = ∑Δ(Ai,  Bi)

𝑛

𝑖=1

Jeccard Distance

The Jeccard distance between two vectors is computed by taking the ratio of Intersection

over Union of the two vectors.

25

Minkowski Half

In general, the Minkowski distance of order p is given by:

𝑑𝑖𝑠𝑡 = (∑|𝐴𝑖 − 𝐵𝑖|
𝑝

𝑛

𝑖−1

)

1/𝑝

In JaguarDB, Minkowski Half distance refers to the Minkowski distance where p = 0.5.

The input type in JaguarDB refers to the expected data format in the input vectors.

There are two input types: fraction and whole. JaguarDB excels not only in managing

vector embeddings but also in handling a diverse range of feature vectors. These vectors

can include various types and forms, whether they are normalized or unnormalized,

presented in fractional or full original formats. This versatility underscores JaguarDB's

capability to accommodate a wide array of data formats.

Fraction Input Format

Each component of a vector is in the range of [-1.0, +1.0], inclusive. An example of a such

a vector would be: “0.1, 0.02, -0.04, -0.5, 0.12, 0.53”.

Whole Input Format

Components of a vector are not limited to the range of [-1.0, +1.0]. They can be in any

range. However, they could be trimmed and converted to the range that is required by

the quantization level as described below.

Quantization Level

26

There are three quantization levels in JaguarDB: byte, short, and float. The process of

quantizing input vectors yields efficient memory utilization within the system. While

storing a float number demands 4 bytes, employing fewer bytes for storing vector

components can yield substantial memory savings. When components are stored as

signed integers, memory savings can reach 50%, while utilizing only a single byte for

vector components can result in an impressive 75% reduction in memory usage. This

approach is termed "short quantization level" for the utilization of signed integers and

"byte quantization level" for the use of a single byte. The quantization of input vectors

aligns with the level specified by the user during vector creation, optimizing memory

consumption while maintaining data integrity.

With byte (8-bit) quantization level, the number of quantized hyper cubes in a 1024-

dimensional hyperspace is 2561024 which is already a large number and vector

distribution would be sparse. With a short (16-bit) quantization level, the number of

available hypercubes is even larger. In rare application scenarios, the vectors could be

densely populated around clusters. A 16-bit quantization may provide higher resolution

of differentiating vectors than an 8-bit quantization. It is a trade-off between storage size

and accuracy in searching nearest neighbors.

Multiple Search Types

During the creation of a vector store, the second argument within the "vector()" field

description, or key definition, offers the flexibility to incorporate multiple instances of

"DISTANCE_INPUT_QUANTIZATION". For instance, it can appear as a series of

"cosine_fraction_byte, hamming_whole_short". This allows users to specify multiple

distance types and quantization levels, albeit limited to a single input type for the same

distance and quantization level. Notably, distinct vector data stores are managed for each

unique combination of the three types, ensuring the effective organization of data based

on these parameters.

List of Key Definitions

Key Definition Distance Input (component x) Quantization

euclidean_fraction_short Euclidean -1.0 <= x <= +1.0 16-bit integer

euclidean_fraction_byte Euclidean -1.0 <= x <= +1.0 8-bit integer

euclidean_whole_short Euclidean -32767 <= x <= 32767 16-bit integer

27

euclidean_whole_byte Euclidean -127 <= x <= 127 8-bit integer

cosine_fraction_short Cosine -1.0 <= x <= +1.0 16-bit integer

cosine_fraction_byte Cosine -1.0 <= x <= +1.0 8-bit integer

cosine_whole_short Cosine -32767 <= x <= 32767 16-bit integer

cosine_whole_byte Cosine -127 <= x <= 127 8-bit integer

innerproduct_fraction_short Inner Product -1.0 <= x <= +1.0 16-bit integer

innerproduct_fraction_byte Inner Product -1.0 <= x <= +1.0 8-bit integer

innerproduct_whole_short Inner Product -32767 <= x <= 32767 16-bit integer

innerproduct_whole_byte Inner Product -127 <= x <= 127 8-bit integer

manhatten_fraction_short Manhatten -1.0 <= x <= +1.0 16-bit integer

manhatten_fraction_byte Manhatten -1.0 <= x <= +1.0 8-bit integer

manhatten_whole_short Manhatten -32767 <= x <= 32767 16-bit integer

manhatten_whole_byte Manhatten -127 <= x <= 127 8-bit integer

hamming_fraction_short Hamming -1.0 <= x <= +1.0 16-bit integer

hamming_fraction_byte Hamming -1.0 <= x <= +1.0 8-bit integer

hamming_whole_short Hamming -32767 <= x <= 32767 16-bit integer

hamming_whole_byte Hamming -127 <= x <= 127 8-bit integer

chebyshev_fraction_short Chebyshev -1.0 <= x <= +1.0 16-bit integer

chebyshev_fraction_byte Chebyshev -1.0 <= x <= +1.0 8-bit integer

chebyshev_whole_short Chebyshev -32767 <= x <= 32767 16-bit integer

chebyshev_whole_byte Chebyshev -127 <= x <= 127 8-bit integer

minkowskihalf_fraction_short MinkowskiHalf -1.0 <= x <= +1.0 16-bit integer

minkowskihalf_fraction_byte MinkowskiHalf -1.0 <= x <= +1.0 8-bit integer

minkowskihalf_whole_short MinkowskiHalf -32767 <= x <= 32767 16-bit integer

minkowskihalf_whole_byte MinkowskiHalf -127 <= x <= 127 8-bit integer

jeccard_fraction_short Jeccard -1.0 <= x <= +1.0 16-bit integer

jeccard_fraction_byte Jeccard -1.0 <= x <= +1.0 8-bit integer

jeccard_whole_short Jeccard -32767 <= x <= 32767 16-bit integer

jeccard_whole_byte Jeccard -127 <= x <= 127 8-bit integer

euclidean_fraction_float Euclidean float 32-bit float

euclidean_whole_float Euclidean float 32-bit float

cosine_fraction_float Cosine float 32-bit float

cosine_whole_float Cosine float 32-bit float

innerproduct_fraction_float InnerProduct float 32-bit float

28

innerproduct_whole_float InnerProduct float 32-bit float

manhatten_fraction_float Manhatten float 32-bit float

manhatten_whole_float Manhatten float 32-bit float

hamming_fraction_float Hamming float 32-bit float

hamming_whole_float Hamming float 32-bit float

chebyshev_fraction_float Chebyshev float 32-bit float

chebyshev_whole_float Chebyshev float 32-bit float

minkowskihalf_fraction_float MinkowskiHalf float 32-bit float

minkowskihalf_whole_float MinkowskiHalf float 32-bit float

jeccard_fraction_float Jeccard float 32-bit float

jeccard_whole_float Jeccard float 32-bit float

Adding Vectors

JaguarDB can integrate all application and vector data, facilitating streamlined data

management for real-world scenarios. It enables the incorporation of vector data

alongside other pertinent information related to business objects, allowing for

comprehensive and cohesive data representation.

insert into STORE (…, VECCOL, …) values (…, 'VECTOR_STRING', …)

insert into STORE values (…, 'VECTOR_STRING', …)

Where VECTOR_STRING is a list of comma-separated components of the vector. In the

second statement, the values must be provided according to the correct order of the

columns in the store. Once the vector is added, the value of the field for VECCOL will be

replaced with an integer as the unique identifier for the vector. With a vector ID, the

components of the vector can be retrieved from the vector database.

Similarity Search

29

Similarity search using JaguarDB vectors involves the process of finding vectors within

the database that are most similar to a given query vector. This search is conducted

based on predefined similarity metrics, such as cosine similarity or Euclidean distance

similarity, which quantify the resemblance between vectors. The API for similarity

search is as follows:

select

similarity(v, 'QUERY_VECTOR',

'topk=K,type=DISANCE_INPUT_QUANTIZATION')

from STORE;

where QUERY_VECTOR is a list of comma-separated component values of the vector.

The number “K” specifies the number of most similar vectors to be found and returned

for the query vector. The returned result is in the JSON format and the developer can

call the jsonString() function to parse the JSON format and retrieve the ID and distance

values.

As an example, the following statement returns the top 5 most similar vectors to the

query vector:

select similarity(v, '0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.1',

'topk=5,type=manhatten_fraction_byte') from vec1;

Combining Vector Search and Exact Search

JaguarDB empowers users with a unique synergy of similarity search and exact predicate

search. In the context of this integration, consider the following Python illustration: it

finds textual instances similar to a given input text while concurrently sifting through

records that adhere to specific criteria. The outcome of this combined endeavor is the

assignment of similarity values to the retrieved records, a direct consequence of the

similarity search's operation. It is noted that the governing criterion, in this case, relates

to the source of the text. However, in practical implementation, a number of predicates

can be applied.

30

select

similarity(v, 'QUERY_VECTOR',

'topk=K,type=DISTANCE_INPUT_QUANTIZATION')

from STORE;

An example of integrating both similarity search and predicate based search is shown

below:

def retrieveTopKWithCriteria(jag, model, queryText, src, K):

 print("Query: " + queryText)

 sentences = [queryText]

 embeddings = model.encode(sentences, normalize_embeddings=False)

 comma_str = ",".join([str(x) for x in embeddings[0]])

 qstr = "select similarity(v, '" + comma_str

 qstr += "', 'topk=" + str(K) + ",type=cosine_fraction_short')"

 qstr += " from textvec"

 qstr += " where source='" + src + "'"

 jag.query(qstr)

 print("\n")

 print("Result: ")

 while jag.reply():

 print('zid={}'.format(jag.getValue("zid")))

 print('v={}'.format(jag.getValue("v")))

 print('vectorid={}'.format(jag.getValue("vectorid")))

 print('rank={}'.format(jag.getValue("rank")))

 print('distance={}'.format(jag.getValue("distance")))

 print('source={}'.format(jag.getValue("source")))

 print('text={}'.format(jag.getValue("text")))

 print("\n")

Anomaly Detection

Jaguar vector database is revolutionizing the way businesses approach anomaly

detection. It provides a structured and efficient means of storing and querying data,

enabling organizations to analyze patterns and deviations with remarkable precision.

This innovative technique not only streamlines the process of anomaly detection but

31

also enhances the accuracy of identifying potential threats. As the business landscape

continues to evolve in an increasingly digital world, leveraging vector databases for

anomaly detection has become a strategic imperative for enterprises seeking to

safeguard their operations and data from malicious activities.

The API for detecting anomaly is shown below:

select

anomalous(VECCOL,

 'type=DISTANCE_INPUT_QUANTIZATION,activation=[sigma:perc]')

from STORE

where the type specifies the distance type and quantization levels of vectors; the optional

parameter sigma is the number of standard deviations, perc is percentage of vector

components pass the sigma value.

select

anomalous(vc,

 'type=euclidean_whole_float')

from myvector;

select

anomalous(vc,

 'type=euclidean_whole_float, activation=[0.3:40;1.5:30]')

from myvector;

Result:

json {"anomalous":"YES","prate":"0.388671875"}

32

Retrieving Vectors

In cases where users need to retrieve the component values of a vector, the following

API can be used:

select

vector(VECCOL, 'type=DISTANCE_INPUT_QUANTIZATION')

from STORE

where KEY=…

For example,

select vector(v, 'type=manhatten_fraction_short')

from vec1

where fid=’ANjf848223@01’

The utilized KEY in the query must uniquely identify a record housing the vector,

typically involving the exclusive use of the ZeroMove unique ID.

Updating Vectors

The vector components can be updated with two approaches:

update STORE

set VECCOL:vector='VECTOR_STRING'

where KEY=…

update STORE

set VECCOL:vector='VECTOR_ID:VECTOR_STRING'

where 1

33

where VECTOR_ID is the integer value of the vector ID, and VECTOR_STRING is a list

of comma-separated component values.

Deleting Vectors

The vector components cannot be deleted separately without deleting the record

containing the vector. A store record can be deleted with the following command:

Delete from STORE

where KEY=…

The KEY in the above statement must uniquely identify a record housing the vector,

typically the ZeroMove unique ID. In addition, dropping or truncating a store will delete

the associated vectors as well.

Conclusion

JaguarDB technology provides a powerful and eco-friendly solution for efficient and

scalable data management for artificial intelligence. Leveraging ZeroMove hashing

technology, its focus on performance, advanced features, and sustainability makes it a

promising choice for organizations seeking reliable and environmentally conscious

solutions for artificial intelligence.

